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AEsrRAcr. We ânalyse the vadous ways of constructing the aet of zero-ordeÎ
formulas (i.e. propositionâl or sentetrtial formulas) : from the intuitive defrtri-
tion, based on a simple linguistic notio[ (combinâtioû of signs), to the abstract
definition of absolutely free algebrâ. Col1necting this last concept vÿith Peâno
axithmetic, we shovÿ why the set of zero-order formulas cannot be axiomatized
in first'order logic ând explain how this carr be used against the formalist âp-
proach to logic ând mathemâ,tics. Finally we try to inv6tigate the hfutoricâl
development of the conception of the set of zero-order formÙlas.

1. Introduction

A first course of logic usually begins with what is viewed as the mo6t elementaxy
paft of logic, namely classical propositional logic. And such a course begins with
the definitiou of the set of formulas.

Most people, even philosophers v/ithout âny mathematical background, can
understand this definitiou, mainly because it is based on a linguistic intuition :

formulas are presented as well-formed expressions built over a,n alphabet, and the
set of formulas is commonly called the "lânguage" , and considered as paxt of "logicâl
syntax".

However there is a very big gap between this intuitive definitior and the math-
ematical concept which is behind it, the concept of absolutely free algebra. In farct,

though this coucept is used by Polish logicans since at least 40 years (cf. [LOS]),
most logicians (except those fa.rniliar with Polish logic or working in algebraic logic)
outside Poland don't kno\ r it and don't use it.

Such notion is, for example, never mentioned by philosophers of logic. They still
work only v/ith the intuitive linguistic approach in particular when they deal with
the ontological problem "sentence versus proposition". Here, to avoid ontological
commitment, we will used the neutral PoLish terminology "zeroorder formulas"
and "zero-order logic". 1
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Nevertheless we will try to explain the philosophical import of a more sophisti-
cated view on the set of zero-order formulas. 

'We will show that the set of zero-order
formulas cannot be axiomatized in first-order logic a.nd explain how this result may
dismiss the formalist approach to logic and mathematics.

The fart that such a result is never discussed is symptomatic of the present state
of philosophy of logic. On the one hand philosophically oriented logicia.ns ignore it,
due to a lack of knowledege, a.nd continue to speak as if nothing ha.d happened since

the thirties ; on the other hand mathematically oriented logicians do not draw the
philosophical consequences of such a result and continue to defend a soft formalist
viewpoint, which they use, erroneously as we will see here, in order to get rid of all
philosophical problems. As Hodges and Kneebone point out: "Mâny contemporaxy

logicians adopt a formalist view because they do not want to be bothered with
philosophical questions" (IHOK], p.80).

We will present and a,nalyse three main ways of defining the set of zero-order

formulas of zeroorder classical logic. We mention zero-order classical logic here in
order to fix the ideas, but this specifi.cation is not essentially relevant due to the
fact that the definition of the set of zero-order formulas is quite the same for all
zero.order logics.

We staxt with the most intütive definition based on lingüstic intuition, v/e

go on with an intermediate one based on concatenâtion of sequences and we end

with the one based on the concept of absolutely free algebra. Then we compare

the definition of the set of zero'order formulas with the axiomatization of the set

of natural numbers.
In the literature most definitions are a mixture of different Ievels of abstraction.

Our aim here is to distinguish clea,rly these different levels, and in particular the
abstraÆt ftom the intuitive.

At the end we $/ilt make some historical remarks, trying to start an investigation

on the historical evolution of the conception of the set of zero-order formulas.

2. Linguistic definition

A very simple way to present the construction of the set of zero-order formulas
is to follow the linguistic intuition of alphabetic la.nguages (i.e. Ia.nguage like Greek,

English, etc.).
This presentation requires nearly no mathematical background and therefore is

useful for philosophers or other people with very little mathematical knowledge or
none. We will try to see here how this construction can be presented and uuderstood
at this level, and at which point this intuition is idealized.

In alphabetic la,nguages, compound expressions, like words and sentences, are

constructed by combinations of signs of an alphabet. Following the same idea we

will define a set of logical expressions.

The alphabet A here is formed by three different kinds of signs:

- an irrfinite quantity of letters of propositi,on, denoted by U, p2, p3, ...

- signs of punctuation, namely right and left parentheses: ( , ).

frequently hal€ to choose between inventing ne\rr terms with the risk of being incomprehensible,
o! else using the customaxy terms with the risk of, ât least, being mislea.ding, aûd, at vÿomt,

rci orciûg the Fle8eârFlogical Positivist faÀfly of views (by, so to speak, 'brainwashing'). (...)
Fa.ed with this choice, vr'e have, as the read?r will see, tempo zed. (.. ) v/e have chooose to ùse

the term (...) 'zero-order' instead of 'propositional' or 'sentential'." ([MAR], p.3)
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- logical signs : A (conjunction), V (disjunction), --+ (implication), - (negation).
In English, punctâtion marks are usually not taken a,s paxt of tne atptrabét

but are considered as additional signs. Here the notion of alphabet is jignUy
generalized: an alphabet is a set of signs, which can be classified under vari.r,i"
categories. A bigger step ftom the alphabetic intuition is the idea to consider an
inffnite set of signs. But the notation used permits an understanding for a,ny person
who knows the set of natural numbers (i.e. any literate person).

Logicia,ns like to talk about symbols instead. of signs. However most ofthe time
they use the word "symbol" as a synonym ofthe word ,rsign,,. It is good for .épater
les bourgeois" and rather confusing for the neophlte who gets impressed by the
pompous expression "synbolic logic,,. In linguistics, the diflerence between signs
a,nd symbols is thât in the case of symbols there is a connection with the meanùg,
by opposition to signs which are blind. In fact logicians do use real symbols, À
the symbol V introduced by Gentzen. But the formalist approach, based on the
rejection of the meaning, does not recognize this true dimension of the s),rnbolism.

A uord. or ar\ eopressdon over the alphabet is arly combination or assemblage
of signs of the alphabet, following the standard notion of combination of signs of
alphabetic language : string of signs. The concept of combination is understood
here in a quite general way, close to the idea of putting together, of physical ma_
nipulation.

Here again the usual alphabetic intuition is slightly generalized, because com-
binations of arbitrary length are considered. In English, though no limitation of
size is stipulated, it is easy to see that there is no words of more than, for exa.:nple,
50 signs.

In English, not all combinations of signs are words. In logic ,,words,, is therefore
used in a broader sense. But a ,,logical language,' is also selective : zero-order
formulas will be specific words on the alphabet A. In English it is difficult to specify
a set of rules of combination of signs which permits to generated all English words
and only those. However what linguists haÿe try to do is to determine a set of rules
of combination of words which leads to English senterces. This is what is called
"generative grammar". But here it is logicians who have influeuced linguists and
not the contra.rÿ Tarski is the real father of generative grammar and noiChomsky
(see the quotation of Corcoran in section 7).

Zero.order formu.las are specific combinations of signs, determined by a set of
rules, which are called sentences or propositions, from the linguistic perspective.
Therefore in logic we go directly from signs to sentences. Sentences are not combi-
nations of words a.nd we recall that what is called word in logic is a.ny combination
of signs.

Among the set of all possible combinations of signs over the alphabet A, a
particular set is defined, lhe set of well-Jomned, erpressions 2 or sentences, or zero_
ord,er formul.a,s,

The definition (DLI) is given by three clauses:

(L1) Starting clause
Letters of propositions are formulas.

2This is the Englbh tmnslêtion of the Ftench terminologr ,.Expressions bien tormées,,, which
is abbreviated by EBFs. In English people use the terminolo§/ ,.l,Vell-formed formulas,, abbre_
viated by W\ryFs. Hovÿever this terminology is quite absurd beca'se formulâs axe ge'erâlly not
considercd as any combinations of signs (i.e. words or expressions). Therefore this terminology is
pleonâstic.
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(L2) Generation clause

Given a formula F, -.P is a formula.
Given two formulas ,F, and G, (.F'n G), (f' v O, (,F, -- G) are formulas.
(L3) Limitation clause
Nothing else is a formula.

It is not obvious that this definition, as simple as it is, can be understood by

an ordinary man, with no mathematical practice. Such an ordinary man may have

some difficulty to understand the recursive process involved in (L2) and he will
perhaps not see the necessity of (L3) (Hisiorically (L3) was ât the beginning not
mentioned, see section 7). There is a more intuitive definition (DST) which is a
construction by stages.

(Stage 0) At this stage, we simply construct formulas by taking all Ietters of
propositions.

(Stage 1) Given a.ny letter of proposition p, $/e construct t5g felmu!4. -p. Given

any t.à/o letters of propositions p and g, we construct the formulas (p 
^ 

S), b V q),

@-ù.
(Stage 2) Given a formula -É' constructed at stage 0 or 1, v/e construct the

formula --F'. Given two formulas -F, and G constructed ât stage 0 or 1, v/e construct

the formulas (r 
^ 

G), (r'v G), (I'-* G).
... etc.

A formula is then defined as a combination of sigrs constructed at one stage.

The set of formulas is the union of all formulas constructed at any stage.

Following Enderton's terminolory (cf. [END], we can say that the first defini-

tion (DLI) is from the top d'oun and the second (DST) from the bottom up. To see

that these two defintions are equivalent is not at â.ll obvious without entering into
some mathematical considerations.

These definitions are a stra,nge mixture of mathematical and non-mathematical

material. They is already a strong idealization of informal linguistic intuition.
Notions such as inînite, recursion, set, union, intersection, etc., appear. Of course

these notions can be understood at the intuitive level, but very soon v/e need more

precise mathematicâl concepts. Even for example if we want to prove a simple

result saying that any formula has the same number of right and left pa.rentheses.

Someone with no idea of what is mathematical induction v/ould not be able to
rigorously prove this property.

3, Deffnition with concatenation of sequences

To the intuitive notion of finite string of sigr» corresponds the abstract math-

ematical notion of finite sequence of objects.
A finite sequence of objects of a given set ,4 can be defined within set-theory as

a set of pairs, each pair having as a Êrst element a natural number, different from
zero, and as a second element an element of A (i.e. as a function from the set of
natural numbers to A).

For example the formula pa Âp1 is represented mathematically by the §equence:

{(3;Pr), (1;Pa), (2; r,)}.
This is just a way of denoting the mathematical construct. Usually we can

denote a sequence, by "abus de language", without mentioning natural numbers,
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brackets, etc. The formula pa Âp1 is therefore used as ân abbreviation. The order
in which we write the signs is enough to express the idea of sequence.

But we have to keep in mind that even if, when we write formr:las on paper, this
material representation is close to the corresponding mathematical sequence, this
does not mean that we are working with this material representation. It is exactly
the same case as with geometry where a circle is not a trace on a sheet of paper. We
operate a definitive jump iruto abstraction This means that, for example, we are
not taking in account the quality of the ink, the temperatüe of the air, etc. The
mathematical idea of sequence abstrâcts from the material string only the notion
of order, mathematically chararcterized with the help of natural numbers (note that
the property of natural numbers $rhich is used in the deÊnition of sequence is just
the fart thât they form a discrete order v/ith first element).

Given two sequences o : {(1;), (2;), ..., (n; )} and d : {(t; ), (Z; ), ...., (rn; )} the
concatenation of o and,0 is the sequence o x0 : \17;),\2;),..., (z;), (1 + n;), (2 +
n;),....,\m+ n;)\.

Conca,tenation, denoted here by *, is a bina.ry operation over the set of finite
sequences of the alphabet. This operâtiotr is rot commutative, but it is associative.'We have here â structure of semi-group and if ÿre introduce the notion of void
sequence, a struct ure of monoid.

With these t$/o notions of sequences and concatenation of sequences, we can
defined (DSC) the set of zero-order formulas in the following manner:

(SC1) Starting clause
Sequences of length 1 formed with "letters of propositions,, are proto-formulas.
(SC2) Generation clause
Given a prota.formula f', the sequence of Iength 1 formed by - concatenated

with ,F. is a proto-formula.
Given two proto-formulas -F' and G, (*,F * 

^*G*), 
(*f'* V *G*), (*tr'* -, *G*)

are proto-formulas.
(SC3) Limitation clause
The set of formulas is the intersection of all sets constructed with clauses (SC1)

and (SC2), i.e. sets of proto-formulas.

This is a definition by induction rdthin set-theory, in particula.r becarrse here
strings of signs axe interpreted âs sequences of objects, therefore as a set-theoretical
construct.

Given this set-theoretical definition, it ma.kes sense to perform definitions and
proofs by induction over the set of formulas. We can also define the set of formulas
in terms of sequences and concatenation from the bottom up (stage definition) and
show that it is equivalent to the above top down deffnition.

Definition by induction of substitution
An atomic substitution is a functiorürom the set of atomic formulas (i.e. ,,let-

ters of propositions" ) to the set of formulas. This function is ertended to a fr:nction
sub ftom the set of formulas into itself in the following way:

sub-F--*subF
sub(F A G) : (*szbF* n *suàG*)
szü(-E V G) : (*szüF*V*suàG*)
sub(F + G) : (*subPx ...+ *subG*)



E JEAN-YVES BÉZIAU

The faÆt that an atomic substitution can be properly extended to such a func-
tion, and therefore that this definition is correct, is due to a firadamental property
which is expressed by the following theorem.

Unique readability theorem
If parentheses were not used in the definition (DSC), then the tv/o formulâs

((-F. AO 
^II) 

aÀd (I' 
^ 

(G^Ir)) will be the same formula -FAGÂII, i.e. one and
the same sequence. Lukasiewicz has introduced a more "economical" (economical

from the point of view of the in} but not from the point of view of readability)
method which permits to distinguish these two formulas v/ithout using parentheses.

This is standardly called "Polish notation". Whitehead and Russell were using also
a. "notation" without parentheses but with dots (due to Pea.no).

For all these "notations" it is possible to prove that "there is only one way
to waite the the same formula". This confuse formulation of the confusely called
"unique readability theorem" can be properly understood only in the Iight of alge-
braic tools.

In fact, we will see in the next section, that behind this question of "notation"
is hidden a mathematical property which is the real essence of the architecture of
the set of zero-order formulas.

4, Algebraic and categorical definitions

The set of zero-order formulas defined by (DSC) has a fundamental property
which can be roughly described as follows :

If we associate values to atomic formulas, and we have a process which tells us

what is the value of a compound formula when the values of its direct components
are known, then we can associate values to all formulas.

This property corresponds to the concept of absolutely free algebra.

It is fundamental when extending distributions of truth-values to atomic for-
mulas to the whole set of formulas and also in the defintion of substitution.

The "unique readability theorem" cor»ists just in proving that the set of zere
order formulas constructed with (DSC) is an absolutely ftee algebra. It turns out
that it is nothing more tha.n that : a.ccidental properties of (DSC) related for
example to the concept of sequence can be forgotten Y/ithout any trouble. It is

also possible to prove that the set of zeroorder formulas constructed with Polish
notation or Peano's dots notation are similar free algebras. These three specific

representations of the same absolutely free algebra differ only in accidental features

of no relevant mathematical siginification (for example formulas in Polish notation
are clearly shorter), that is why they are usually taken as equivalent.

Let us now turn to the precise definition of absolutely free algebra. At abso'

lutely free algebra A is an abstract algebra (in the sense of Birkhoff, i.e. a set with
a family of finitary operations), such that there is a subset G, the set of generators,

of the domain .4, such that any function from this set to the domain lE of a similar
algebra B uniquely extends to a homomorphism from A. to IE.

The set of zero-order formulas is an absolutely free algebra generated by atomic
formrrla-s with the connectives considered as functions :

f' : (1F; -,--+, A, V, ).
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Endomorphims of this algebra correspond exactly to the standa.rd concept of
substitution, as noticed in [LOS]. This only one example of nice simplifications
that arise when we a.re working directly with this concept. 3

It is worth noting that the concept of absolutely free algebra can be defined
very elegantly in terms of Category Theory: an absolutre free algebra is the initia,l
object of the category of all abstract algebras of similar type. In fact one proves
that for any category of all abstract algebras of similax type, there exists a unique
initial object. The fact that an âbsolutely free algebra is an initial object means
that it generates by homomorphic projection all the algebras of the category (see
the description of Suszko in section 7).

Flom this point of view formulas are abstract objects of a mathematical struc-
ture. According to the mathematical ontology of the structure, especially developed
by Bourbaki, to be is to be an element oJ a stntcture. Mathematicâl objects axe
determined by the relations they have within a structure. Therefore to specifu the
"nature" of zero-order formulas is to specifu the nature of their structure, i.e. the
structure of absolutely ftee algebra.

The question to know which kind of things these abstract objects represent,
sentences or propositions, is another problem (see section 6 below).

5. Definition of zero-order formulas and axiomatization of arithmetic

Consider an absolutely free algebra with only one generator, 0, and only one
unary firnction s, called successor. This is what is called a Peano algebra (cf.
e.g. [GRA]). As the name indicates we are close to natural numbers a.nd Peano
axiomatics.

A Peano algebra is the unique model, up to isomorphism, of second order
axioms for a.rithmetic. That it is to say it is the set of natural numbers.

Let us recall second order axioms for arithmetics (2PA). In the language we
need just a constant, 0, and a unary function symbol, s.

(2PLt) vr(sx l0)
(2PL2) YaYy(sr : sy -+ n - g)
(2PAI) Ye((90 &,Vrqx + qsx) -+ Yrgx)

For obvious reasons we are using here difierent signs for implication and con-
junction. The symbol g is a va.riable ranging over monadic predicates.

(2PA) is an axiomatization of the simplest âbsolutely free algebra. Iÿe ca.n in
a simila.r way axiomatize the absolutely ftee algebra of zero-order formulas. First,
note that if sr'e interpret the function s as the negation - a,nd 0 as an atomic
formula, then the above axioms chaxa,cterize a zero-order set of formulas with only
orre atomic formula and negatioru of this formula. To axiomatize the whole zero.
order "la.nguage" we need a language with a mona.d.ic predicâte P (which will help
to spea.k about atomic formulas), a una.ry function symbol - and three binary
function symbols, -r, 

^,V. 
Here is the axiomatic (2FPA) :

(2PFA1)VzVyVz(( P z + -r * z) k (a .- y I z) k (r t y I z) 8z (r v s I z))

3Polish logicians generally v/hen they axe dealing vrith zero-order logic v/ork direcdy with the
concept of absolutely free algebm (and other concepts of Universat Algebm) without ente ng in
details. Details can be found in [BAM].
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(2PFA2) Vrvg((-r - -U + ï: a) k(r ' y: u'+ t =+ r: uklt:
t) k (a ny : u At =) r : u k ÿ : t) k (n V y: uY t 1 r : ukY : t))

(zPFAI) Ve(((Vr((Pr =+ er) k (er + e-x)) k (YtYy((er k ev .+ e(r "+

y))) k (çr k ey =+ e@ tt, y)) k (er k es + e(r v s)))) =+Yxer)

If we replace (2PAD by a schema of axiom of first-order logic, v/e get a flrst-
order set of âxioms (1PAs). As it is known, it not âil,'more possible to define

addition and multiplication v/ith (1PAs). This already suggests that the models of
(1PAs) are not the same a,s the models of (2PA) and that in pa.rticular (1PAs) does

not axiomatize the notion of Peano algebra.
(lPAs) is categorical for any uncountable cardinal and therefore is complete

and decidable, however it is not No categorical. In all uncoutable models, there

axe some "non-staÀda,rd" objects, that is to say objects which cannot be reached

by a finite number of application of the successor function. Some dentrmerable

models can also have such non-standard objects (that is why this theory is not N6

câtegorical (see [END] and [VIA]).
That means that if we interpret the function s as the negation, models of (lPAs)

will have some "non-standard formulas" and therefore (1PAs) witl not provide a

right definition of the set of zero-order formulas constructed only v/ith negation

and one atomic formula. Of course the situation will not improve if we consider

the first-order formulation (1PFA) of (2FPA) by replaciug (2PFAI) bv a first-order
schema of axiom.

As (1PAs) is complete, it it not possible to find a first-order extension of it
which will be N0 ca.tegorical, because an extension of (lPAs) is either logically
equivalent to it or trivial.

The conclusion is therefore that it is not poss'ible to find a first-order axi,oma-

tizati,on of the set ol zero-ord,er fonnulas. And, this result applies a fortiori to the
set of first-order formulas. 4

This does not contradict the fact that these sets cân be constructed within
first-order set theory. But this fact does not dismiss the fundamental philosophical

import of the above negative result, in particular because fi.rst-order set-theory is

undecidable and incomplete.

6. Remarks on the formalist approach

It seems that this result can be used against the formalist approach to logic

and mathematics.
The formalists think that all mathematics and logic can be founded on formal

languages and rules whose manipulation is so simple that it can be operated by any

lit erate person.
This is what Bourbaki argues in order to defend himself against the vicious

circle according to which the construction of formal la.nguages requires what it is

supposed to found, for example natural numbers :

Nous ne discuterors pas de Ia possibilité d'erseigner les principes

du Iangage formalisé à des êtres dont le développement intellectrrel

n'irait pas jusqu'à savoir lire, écrire et compter. ([BOU], pp.a-5)

4One referee argues that the above theory which is complete but not câtegoricâl "provides fuIl
âccess to the properties of zero.order formulas". But this is ambiguous : it pmvides fitll â'cess t"
the properties of all the objects, including, D.n-standard formulas. So any theorem of the theory
is about stândard ând tron-stândard formulas.
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But our previorx discussion shows very rÀ.ell that to construct the simplest
formal language we need much more than the knowledge of prima.ry school. We
really need some concepts which can properly be described only by an advanced
formal system such as set lheory.

Formalists a.rgue also that an essential advantage of their position is one of the
fundamental feature of formalism according to which they don't take into arccount
the notion of mea.ning :

A theory, a rule, a definition, or the like is to be called formal when
no reference is ma.de in it either to the meaning of the symbols (for
example, words) or to the sense of the expressions (e.g. sentences),
but simply and solely to the kinds a"rrd order of the symbols from
which the expression are constructed. ([CAR], p.t)

We have seen that the construction ofthe simplest formalized language reqüres
fa.r more that the intuitive notion of order. Moreover the idea of the construction is
uot reducible to the ability of manipulating signs, and to rurderstand it one needs
to understand the "meaning" of a notion such a,s mathematical induction.

It is also in the spirit of formalism to say that zero-order logic is about sentences
rather than propositions.

But, as we have seen, zero-order formulas are mathematical objects which are
far more abstract than sentences of natural languages. Given these abstrart math-
ematical objects, we can think that they represent sentences or propositions.

To thinl< that zero.order formulas represent propositions rather than sentences
does not necessarily mean that one "believes in proposition". It just means that
zero-formulas are abstract objects intended to represent the intuitive notion of
proposition as it appears in ordinary mathematics. One may prefer to say that
they represent the intuitiye notion of sentence, arguing that the intuitive notion
of proposition is confused. But the intuitive notion of sentence is not so clear,
for example the principle of identity for sentences may appeax as problematic (see

lBEzl).
What is incorrect, in both cases, is to say that zero-order formulas ore sen-

tences or that they ore propositions. But this shall not prohibit us to call them
sentences and propositions, using the name ofthe intuitive notion they are intended
to represent. This is a very common a.nd useful mathematical practice, as noticed
by H.B.Curry, one of the greatest formalists, who was not afraid to use the term
"proposit"ion":

The term "proposition" is a controversial subject in mathematical
logic. Some logicians eschew it Iike poison ; they insist on replacing
it, in all contexts where it had been used as a matter of course, by the
word "sentence" ; others ir»ist on using it, ostensibly on the ground
that we need to postulate entities which it can properly denote. The
usage here is neutral in rega.rd to this metaphysiÇal controversy. (...)
a particular kind of interpretation is intended ( . . ) but no commitment
âs to the metaphysical nature of that trterpretation is made. (...)
This agrees with the tra.dition according to which we use terms which
suggest the intended application .(...) Mathematicians can and do
use, as technical terms, words vrhich are commonly used for other
purposes in uruelated context. The use of the term "proposition,, in
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a mathematical context does not commit one, unless he so chooses,
to postulate mysterious entities of an esoteric sort. ([CUR], pp.16&
16e).

7. Historical remârks

It seems difficult to trace back the definitiou of zerqorder formulas ftom the
jungle of logical works written before logic turns to be officialized and standardized
in classical text books such as those of Church a,rrd Kleene.

According to Corcoran, Tarksi is the real creator of the precise definition of set
of formr.rlas (close to the definition (DSC) that we have presented):

In order to treat the syntax of the object language within a deductive
metasystem it is necessâry to present â formal definition of the set of
sentences ofthe object language. Such a definiton has become known
as a recursive grammâx, ând, more recetrtly, as a generative gra,:rrmar.
In order to present a formally correct generative grammar it is neces-
sary to conceive of string theory (the lâxrs governing the interrelations
among strings of signs) and to codi{y string theory as a deductive
science. In the "Wahrheitsbegriff", Tarski isolates as a primitive no-
tion the fundamental operation of concatenation of strings and he
presents, employing concatenatio!, the first axiomatic codification of
string theory (\all, 173), thereby providing deductive foundations of
scientific syntax. Àrticle VIII also contains the first formal presenta-
tion of a generative grammâx (VIII, 175, 176). It is to be regretted
that many linguists, philosophers, ând mathematicians know so little
of the history of the methodology of deductive science that they at-
tribute the basic ideas of generative grammâr to linguists working in
the 1950s rather than to Tarski (and other logician/methodologists)
working in the esxly 1930s. Other authors including LeÉniewski, Aj-
dukiewicz, Lukasiewicz, Thue, Post, and Gôdel had used ideas about
scientific syntax before 1932. But these authors presupposed in an
informal way the ideas that Tarski presented in a carefi.rl deductive
setting. This is one more instance where Tarski provides the formal
foundations of ideas already informally in use. ([COR], p.xx) 5

We will provide a fe$r quotations from some of the most famous texts and
papers of logic of the beginning of the century which seem to support Corcoran's
statement.

It Principia Mathemati,ca, we find the following presentation:

An aggregation of propositions, cor»idered as wholes not necessarily
unambiguously determined, into a single proposition more complex
than its constituents, is a function with propositions as arguments.
The general idea of such an aggregation of propositions, or of vari-
ables representing propositions, $rill not be employed in this work.
But there are four special cases which are of fundamental impor-
tance, si[ce all the aggregations of subordinate propositions into one
complex proposition which occur in the sequel are formed out of them
step by step. They are (1) the Contradictory function, (2) the Logical

sMore information can be found in [COA].
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Sum, or Disjunctive F\:nction, (3) the Logical Product, or Conjunc-
tive fi.mction, (4) the Implicaiive l\rnction. (...) The Logical Product
is a propositional firnction with trTo axguments p and q, and is the
proposition asserting p a,nd q conjunctively that is, asserting that
both p and q are true. ([Wffn], p.O)

This quotation shows cleârly that the definition of the set of formulas was quite
intuitive and in pârticular that syntactic and semanticâl considerations were mixed.

Many yea,rs later, the sârne occlrs in the textbook of Hilbert and Ackermann:

Aussagen kônnen in bestimmter Weise zu neuen Aussagen rerknüpft
ï/êrden. Z.B. kann man aus den beiden Aussagen "2 is kleiner als
3", "der Schnee is schwarz" (sic) die neuen Aussagen bilden : "2 ist
kleiner als 3 und. der Schnee ist schwaxz" (...). XkY (lies "X und,
Y") bezeichlet die Aussage, die dann und nur dann richtig ist, $/enn
sowohl X als Y richtig is. ([HIA], p.3).

Post and Gentzen who respectively worked on the influence of \Mhitehead-
Russell and Hilbert-Ackermann's books, gave both a purely formal syntactic defin!
tion ofthe set of zero-order formulas. But their defi:ritiors are still far from Tarski,s
arhievement.

Here is Post's definition (note that what Post calls "elementary propositions,,
âxe not atomic propositions but propositions of zero-order logic by opposition of
higher-order propositions) :

Let p, pt, p2, .,,, 4, et, e2, ..., r, r t, r 2,... arbitrarily represent the vaxi-
able elementâxy propositions mentionned in the introduction.Then by
means of the two primitive functions - p (read not p, the function of
negation) and p V q (p or q, the function of disjunction) with the aid
of the primitive propositions

I. Ifp is an elementaxy propositions, - p is an elementaxy propo-
sition,

II. If p and q are elementâry propositions) p V q is an elementary
proposition,

we combine these va,riables to form the va,rious propositions, or,
rather, ambiguous values of propositional functions of the system.
(Posl, p.164).

The definition of Post bears several defects. No reference to the starting clause
is made and there is no limitation cl&use. Post, like Whitehead-Russell interprets
the connectives as functions (due to their intended semantical interpretation) but
we a.re still far ftom the notion of absolutely free algebra.

Gentzen, in his famous paper, constructs the set of first-order formulas without
any reference to meaning, stating clearly the stârting and the generative clause
but without mention of the limitation clause (cf. [GEN], items 2.7,2.17,2.t2).
However he explicitly says that the concept of formula is defined inductively (item
2,LL),

During all this pre.Tarskian period, it is not at all clear what is the flesh and
blood of formulas. They are probably considered as linguistic objects, but ât the
same time start to be treated as mathematical objects.

It is difficult to know exactly when it \r/as realized that the set of zero-order
formulas can be characterized by the concept of absolutely free algebra, although
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for sure it
that this idea goes back to Lindenbaum:

... as observed first by Lindembaum, formalized languages are alge-

braic systems, i.e., sets supplied wiih (free) operatior» determined

by formation rules. (lSUa], P S)

However, in another paper Suszko sàys that it is an idea of Lindenbaum and

Tarski:
Lindenbaum and Tarski observed that the formalized language L is
an absolutely free, or anarchic algebraic structure and' hence' the

fountain of tLe whole class K(L) of all algebraic structures similar to

L (tsubl, P.377). 
6

Now Let us turn to the relation between Peano arithmetic and the construction

ofthesetofzero.orderformu]as.WewillexaminehereâtextbyHen}inwherehe
also claims the priority of Tarksi's contribution:

Tarski a été le premier à développer de façon axiomatique la théorie

des expressions ([HEN], P.23)'

Henkin presents three axioms for the construction of expressions (independent

.f 
^"V 

p*tiËU., alphabet) and an operation of concatenation 11 ( "enchainement" )

ù"i*1", 
"*pr"""ior" 

("or"ld"r"d imllicitly as sequences)' He says that the set of

expressionsiogether àth the operation of conca'tenation form a free semi-goup a'nd

makes the following comments:

Observom que da.ns 1e cas z: 1, les axiomes E1-E3 ne sont autres

que les axiomes de Peano pour le système des nombres naturels ;

I;opération o est alors l'addition des nombres naturels' Nous sommes

donc portés à croire que la théorie des expressions n'est pas moir»

riche, dans son développement, que la théorie des nombres En fait

il n'en est rien . ([HEN], 1956, pp'22-23)

It seems that here Henkin does not make the right comparison betv/een the set

of formulas and arithmetic. In particular because, as we have seen, the notion of

"àr"x"rution 
is not essential for zero-order formulas' But what he says can be

transposed to the absolutely ftee algebra of zero-order formylal''----iiJi, 
urglr"" fiuther on that the theory of expressions is simpler than number

th"-y b""uu"J it is decidable. For sure, it is simpler, but we have seen that though

;h";i*.y (1PAF) is decidable, this theory does not axiomatize properlv the set

oi r"r*o."dÀ fo.*riat. To define the set of zereordet formulas we need a theory

which is not so simple (like first-order set-theory)
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